

netorcai

netorcai (/ˈnet.ɔː.kaɪ/) is a network orchestrator for artificial intelligence games.
It splits a classical game server process into two processes, allowing to
develop various games in any language without having to manage all
network-related issues about the clients.

This is done thanks to a Network metaprotocol.

[image: netorcai architecture]

Contents:

	Installation
	Via go standard tools

	Via Nix

	Network metaprotocol
	Network entities (endpoints)

	Message types

	Expected client behavior

	Expected game logic behavior

	Client libraries
	Client libraries API

	Usage examples

	Getting the libraries

	Frequently asked questions
	Running netorcai in my scripts gives an ioctl error

	Running netorcai in background does not work in my scripts

	Rationale

	Changelog
	Unreleased

	v2.0.0

	v1.2.0

	v1.1.0

	v1.0.1

	v1.0.0

	v0.1.0

Todo

Make a non-ugly entities figure.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/netorcai/checkouts/latest/docs/metaprotocol.rst, line 36.)

Todo

Make a non-ugly client behavior figure.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/netorcai/checkouts/latest/docs/metaprotocol.rst, line 457.)

Todo

Make a non-ugly logic behavior figure.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/netorcai/checkouts/latest/docs/metaprotocol.rst, line 470.)

Installation

Via go standard tools

As netorcai is implemented in Go [https://golang.org/], it can be built with the go command [https://golang.org/cmd/go/].
Installation steps are as follows.

	Install a recent Go [https://golang.org/] version.

	Run go get github.com/netorcai/netorcai/cmd/netorcai.
This will download and compile netorcai.
The executable will be put into ${GOPATH}/bin
(if the GOPATH environment variable is unset,
it should default to ${HOME}/go or %USERPROFILE%\go).

In brief.

go get github.com/netorcai/netorcai/cmd/netorcai
${GOPATH:-${HOME}/go}/bin/netorcai --help

Via Nix

Nix [https://nixos.org/nix/] is a package manager with amazing properties that is available on
Linux-like systems.
It stores all the packages in a dedicated directory (usually /nix/store),
which avoids interfering with classical system packages (usually in /usr).

Once Nix is installed on your machine (instructions on Nix’s web page [https://nixos.org/nix/]),
packages can be installed with nix-env --install (-i).
The following command shows how to install netorcai with Nix.

Install latest release.
nix-env -f https://github.com/netorcai/netorcaipkgs/archive/master.tar.gz -iA netorcai

Alternatively, install latest commit.
nix-env -f https://github.com/netorcai/netorcaipkgs/archive/master.tar.gz -iA netorcai_dev

Network metaprotocol

This metaprotocol is based on TCP and is mostly textual,
as all messages are composed of two parts.

	CONTENT_SIZE, a 32-bit little-endian unsigned integer corresponding to
the size of the message content (therefore excluding the 4 octets used to store CONTENT_SIZE).
CONTENT_SIZE value must be smaller than 1 kio for the first message,
and smaller than 16 Mio for other messages.

	CONTENT, an UTF-8 string of CONTENT_SIZE octets, terminated by an UTF-8
Line Feed character (U+000A).

The content of each message must be a valid JSON [https://www.json.org/] object.
Messages are typed (see message types) and clients must follow a specified
behavior (see expected client behavior).

Network entities (endpoints)

This metaprotocol allows multiple entities to communicate.

	The unique game logic entity, in charge of managing the game itself.

	Clients entities, that are in one of the following types.

	Player, in charge of taking actions to play the game

	Visualization, in charge of displaying the game progress

	The unique netorcai entity:
Central orchestrator (broker) between the game logic and the clients.

[image: entities figure]

Todo

Make a non-ugly entities figure.

Message types

Each message has a type.
This type is set as a string in the message_type field of the main message JSON object.
The other fields of the main JSON object depend on the message type.

List of messages between clients and netorcai.

	LOGIN

	LOGIN_ACK

	KICK

	GAME_STARTS

	GAME_ENDS

	TURN

	TURN_ACK

List of messages between netorcai and game logic.

	(LOGIN)

	(LOGIN_ACK)

	(KICK)

	DO_INIT

	DO_INIT_ACK

	DO_TURN

	DO_TURN_ACK

LOGIN

This message type is sent from (clients or game logic) to netorcai.

This is the first message sent by clients and game logic.
It allows them to indicate they want to participate in the game.
netorcai answers this message with a LOGIN_ACK message if the logging in
is accepted, or by a KICK message otherwise.

Fields.

	nickname (string): The name the clients wants to have.
Must respect the \A\S{1,10}\z (in go regular expression syntax [https://golang.org/pkg/regexp/syntax/]).

	role (string). Must be player, visualization or game logic.

	metaprotocol_version (string).
The netorcai metaprotocol version used by the client (see Changelog).

Example.

{
 "message_type": "LOGIN",
 "nickname": "strutser",
 "role": "player",
 "metaprotocol_version": "2.0.0"
}

LOGIN_ACK

This message type is sent from netorcai to (clients or game logic).

It tells a client or the game logic that its LOGIN has been accepted.

Fields.

	metaprotocol_version (string).
The netorcai metaprotocol version used by the netorcai program (see Changelog).

Example.

{
 "message_type": "LOGIN_ACK",
 "metaprotocol_version": "2.0.0"
}

KICK

This message type is sent from netorcai to (clients or game logic).

It tells a client (or game logic) that it is about to be kicked out of a game.
After sending this message, netorcai will no longer
read incoming messages from the kicked client (or game logic).
It also means that netorcai is about to close the socket.

It can be sent for multiple reasons:

	As a negative acknowledge to a LOGIN message

	If a message is invalid.

	Its content is not valid JSON.

	A field is missing or has an invalid value.

	If a client does not follow its expected behavior (see expected client behavior).

	If netorcai is about to terminate.

Fields:

	kick_reason (string): The reason why the client (or game logic) has been kicked

Example:

{
 "message_type": "KICK",
 "kick_reason": "Invalid message: Content is not valid JSON"
}

GAME_STARTS

This message type is sent from netorcai to clients.

It tells the client that the game is about to start.

Fields.

	player_id: (integral non-negative number or -1):

	If the client role is player, this is the player’s unique identifier.

	It the client role is visualization, this is -1.

	players_info: (array of objects):
If this message is sent to a player, this array is empty.
If this message is sent to a visualization, this array contains
information about each player.

	player_id (integral non-negative number):
The unique player identifier.

	nickname (string): The player nickname.

	remote_address (string): The player network remote address.

	is_connected (bool): Whether the player is currently connected to netorcai.

	nb_players (integral positive number): The number of players of the game.

	nb_special_players (integral positive number): The number of special players of the game.

	nb_turns_max (integral positive number): The maximum number of turns of the game.

	milliseconds_before_first_turn (non-negative number):
The number of milliseconds before the first game TURN.

	milliseconds_between_turns (non-negative number):
The minimum number of milliseconds between two consecutive game TURN.

	initial_game_state (object): Game-dependent content.

Example.

{
 "message_type": "GAME_STARTS",
 "player_id": -1,
 "players_info": [
 {
 "player_id": 0,
 "nickname": "jugador",
 "remote_address": "127.0.0.1:59840",
 "is_connected": true
 }
],
 "nb_players": 4,
 "nb_special_players": 0,
 "nb_turns_max": 100,
 "milliseconds_before_first_turn": 1000,
 "milliseconds_between_turns": 1000,
 "initial_game_state": {}
}

GAME_ENDS

This message type is sent from netorcai to clients.

It tells the client that the game is finished.
The client can safely close the socket after receiving this message.

Fields.

	winner_player_id (integral non-negative number or -1):
The unique identifier of the player that won the game.
Can be -1 if there is no winner.

	game_state (object): Game-dependent content.

Example.

{
 "message_type": "GAME_ENDS",
 "winner_player_id": 0,
 "game_state": {}
}

TURN

This message type is sent from netorcai to clients.

It tells the client a new turn has started.

Fields.

	turn_number (non-negative integral number):
The number of the current turn.

	game_state (object): Game-dependent content that directly corresponds to
the game_state field of a DO_TURN_ACK message.

	players_info: (array of objects):
If this message is sent to a player, this array is empty.
If this message is sent to a visualization, this array contains
information about each player.

	player_id (integral non-negative number):
The unique player identifier.

	nickname (string): The player nickname.

	remote_address (string): The player network remote address.

	is_connected (bool): Whether the player is currently connected to netorcai.

Example.

{
 "message_type": "TURN",
 "turn_number": 0,
 "game_state": {},
 "players_info": [
 {
 "player_id": 0,
 "nickname": "jugador",
 "remote_address": "127.0.0.1:59840",
 "is_connected": true
 }
]
}

TURN_ACK

This message type is sent from clients to netorcai.

It tells netorcai that the client has managed a turn.
For players, it contains the actions the player wants to do.

Fields.

	turn_number (non-negative integral number):
The number of the turn that the client has managed.
Value must match the turn_number of the latest TURN received by the client.

	actions (array): Game-dependent content.
Must be empty for visualizations.

Example.

{
 "message_type": "TURN_ACK",
 "turn_number": 0,
 "actions": []
}

DO_INIT

This message type is sent from netorcai to game logic.

This message initiates the sequence to start the game. netorcai
gives information to the game logic, such that the game logic can
generate the game initial state.

Fields.

	nb_players (integral positive number): The number of players in the game.

	nb_special_players (integral positive number): The number of special players in the game.

	nb_turns_max (integral positive number): The maximum number of turns of the game.

Example.

{
 "message_type": "DO_INIT",
 "nb_players": 4,
 "nb_special_players": 0,
 "nb_turns_max": 100
}

DO_INIT_ACK

This message is sent from game logic to netorcai.

It means that the game logic has finished its initialization.
It sends initial information about the game, which is forwarded to the clients.

Fields.

	initial_game_state (object):
The initial game state, as it should be transmitted to clients.
Only the all_clients key of this object is currently implemented,
which means the associated game-dependent object will be transmitted to
all the clients (players and visualizations).

Example.

{
 "initial_game_state": {
 "all_clients": {}
 }
}

DO_TURN

This message type is sent from netorcai to game logic.

It tells the game logic to do a new turn.

Fields.

	player_actions (array): The actions decided by the players.
There is at most one array element per player.
This array contains objects that must contain the following fields.

	player_id (non-negative integral number):
The unique identifier of the player who decided the actions.

	turn_number (non-negative integral number):
The turn whose the actions comes from (received from TURN_ACK).

	actions (array): The actions of the player.
Game-dependent content (received from TURN_ACK).

Example.

{
 "message_type": "DO_TURN",
 "player_actions": [
 {
 "player_id": 0,
 "turn_number": 0,
 "actions": []
 }
]
}

DO_TURN_ACK

This message type is sent from game logic to netorcai.

Game logic has computed a new turn and transmits its results.

Fields.

	winner_player_id (non-negative integral number or -1):
The unique identifier of the player currently winning the game.
Can be -1 if there is no current winner.

	game_state (object):
The current game state, as it should be transmitted to clients.
Only the all_clients key of this object is currently implemented,
which means the associated game-dependent object will be transmitted to all
the clients (players and visualizations).

Example.

{
 "message_type": "DO_TURN_ACK",
 "winner_player_id": 0,
 "game_state": {
 "all_clients": {}
 }
}

Expected client behavior

netorcai manages the clients by associating them with a state.
In a given state, a client can only receive and send certain types of messages.
A client that sends an unexpected type of message is kicked by netorcai
(see KICK).

The following figure summarizes the expected behavior of a client.

	Each node is a client state.

	Edges are transitions between states.

	?MSG_TYPE means that the client receives a message of type MSG_TYPE.

	!MSG_TYPE means that the client sends a message of type MSG_TYPE.

[image: client expected behavior figure]

Todo

Make a non-ugly client behavior figure.

Expected game logic behavior

Similarly to clients, netorcai manages the game logic by associating it with a state.

Its expected behavior is described in the following figure.

[image: game logic expected behavior figure]

Todo

Make a non-ugly logic behavior figure.

Client libraries

The netorcai architecture is a client-server one.
The netorcai program has the role of a network server while
the other entities (games, players and visualizations) have a client role.

While netorcai clients can be implemented from scratch,
several libraries have been implemented to ease the communication with the netorcai server.
All these libraries are available in the netorcai organization github repository [https://github.com/netorcai/].
Currently, the following libraries have been implemented.

	netorcai-client-cpp [https://github.com/netorcai/netorcai-client-cpp]

	netorcai-client-d [https://github.com/netorcai/netorcai-client-d]

	netorcai-client-fortran [https://github.com/netorcai/netorcai-client-fortran]

	netorcai-client-java [https://github.com/netorcai/netorcai-client-java]

	netorcai-client-python [https://github.com/netorcai/netorcai-client-python]

Contrary to bindings [https://en.wikipedia.org/wiki/Language_binding], all these libraries are fully implemented
in the target programming language.
The main advantage is that the installation of each library is simplified,
as it can be done directly with the language packaging tools.

Client libraries API

All the client libraries propose the same programming interface.
Inner details may of course vary depending on the programming language,
such as the type used to store collections of items or the
variable/function name depending on the language coding style.
All existing libraries provide the following.

	A high-level Client class that manages the network connection.

	Structured types for the various messages of the metaprotocol
(see Message types).
Each message is implemented as a struct in C++ and D,
and as class in Java and Python.

	Functions to parse the various metaprotocol messages.

The Client class is intended to be the main way to send and receive
netorcai messages. This class provides the following methods.

	Various methods to send metaprotocol messages on the network,
named send<MESSAGE_TYPE> (e.g., sendLogin).

	Various methods to receive and parse metaprotocol messages from the network,
named read<MESSAGE_TYPE> (e.g., readLoginAck).
These functions do not return until a message could be read
(or if a connection issue has been detected).

	sendString and sendJson,
that respectively send a user-defined string
or a user-defined JSON object on the network.

	recvString and recvJson,
that respectively receive a string or a JSON object from the network.
These functions do not return until a message could be read
(or if a connection issue has been detected).

Note

All these methods can throw exceptions if a network error has been encountered.
Furthermore, all read<MESSAGE_TYPE> methods will throw an exception if an unexpected
message type has been received (e.g., if the client received a KICK).

Usage examples

As an example, here is a basic player bot in Python.

try:
 # Instantiate a client in memory.
 client = Client()

 # Connect the internal socket to netorcai (on the 4242 port of the local machine).
 client.connect("localhost", 4242)

 # Log in to netorcai as a player. The client's nickname is "Example".
 client.send_login("Example", "player")
 client.read_login_ack()

 # Wait for the game to start.
 game_starts = client.read_game_starts()

 # Precalculation can be done here. Here, the initial game state is just printed.
 print(game_starts.initial_game_state)

 # For each turn.
 for i in range(game_starts.nb_turns_max):
 # Wait for the turn to start.
 turn = client.read_turn()
 # Decide what to do. Here, the current game state is just printed and no action is done.
 print(turn.game_state)
 actions = []
 # Send the decided actions to netorcai.
 client.send_turn_ack(turn.turn_number, [])
except Exception as e:
 print(e)

All libraries have examples in the examples directory of their
respective repository. Please refer to them for more examples.

Getting the libraries

Getting the latest released version is easy for languages that have a standard package index.

	D: Add the netorcai-client dependency in your project (netorcai-client package on DUB [https://code.dlang.org/packages/netorcai-client]).

	Java: Not uploaded on the maven repository yet 😽.

	Python: pip install netorcai (netorcai package on PyPI [https://pypi.org/project/netorcai/])

Otherwise, getting the library from its git repository is pretty straightforward.
Building and installation instructions are in the README of each repository.

Alternatively, some of these libraries are packaged in Nix [https://nixos.org/nix/] in the netorcaipkgs [https://github.com/netorcai/pkgs] package repository.
Here are some commands to install the libraries.

Install the C++ client library.
Latest release
nix-env -f https://github.com/netorcai/netorcaipkgs/archive/master.tar.gz -iA netorcai_client_cpp
Up-to-date (latest commit)
nix-env -f https://github.com/netorcai/netorcaipkgs/archive/master.tar.gz -iA netorcai_client_cpp_dev

Frequently asked questions

Running netorcai in my scripts gives an ioctl error

Try using the --simple-prompt option.

Running netorcai in background does not work in my scripts

Try launching netorcai via nohup [https://en.wikipedia.org/wiki/Nohup].

Rationale

In the context of Lionel Martin’s challenge [https://www.univ-orleans.fr/iut-orleans/informatique/intra/concours/],
I have been involved in the implementation of multiagent network
games meant to be played by bots.

After implementing several games (spaceships [https://github.com/mpoquet/concoursiuto2015] in 2014, aquar.iom [https://github.com/mpoquet/aquar.iom] in 2016) I
came to the following conclusions.

	Implenting the network server is tough.

	Handling the clients correctly (errors, fairness, not spamming slow clients…)
mostly means that most of the development time is in the network game server,
not in the game itself.

	The games in this context are quite specific
(fair, turn-based, visualizable, no big performance constraint),
which means the development effort can be shared regarding the network server.

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/].
netorcai adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html] and its public API includes the following.

	netorcai’s program command-line interface.

	netorcai’s metaprotocol.

Unreleased

	Commits since v2.0.0 [https://github.com/netorcai/netorcai/compare/v2.0.0...master]

v2.0.0

	Commits since v1.2.0 [https://github.com/netorcai/netorcai/compare/v1.2.0...v2.0.0]

	Release date: 2019-02-24

Changed (breaks metaprotocol)

	The CONTENT_SIZE message header is now 32-bit (was 16-bit).
CONTENT_SIZE value must be smaller than 1 Kio [https://en.wikipedia.org/wiki/Binary_prefix#Adoption_by_IEC,_NIST_and_ISO] for the first message,
and smaller than 16 Mio [https://en.wikipedia.org/wiki/Binary_prefix#Adoption_by_IEC,_NIST_and_ISO] for other messages.

	Protocol version handshake added in LOGIN and LOGIN_ACK.
As a result, old clients will not be able to log in anymore because their metaprotocol version is unknown.

Added

	New CLI command --fast, which allows to start a new turn as soon as
all players have decided what to do — instead of relying on a timer.
This assumes that all player clients return in finite time —
either by returning a TURN_ACK or by closing their sockets.

	Special players can now be connected to netorcai.
The game logic knows which bots are special, which allows implementing
game modes with asymetric game rules.
As an example, the ghosts of a bomberman game could be implemented in a
special player bot which could have different actions than bombermen.

	New CLI command --nb-splayers-max, to define the maximum number of special players.

	DO_INIT and GAME_STARTS messages now contain a nb_special_players field.

Fixed

	Various corner case deadlocks have been fixed and should now be covered by integration tests.

	Several issues around netorcai’s termination have been fixed.

	Kicking clients induced a non-compressible time delay to limit the loss of messages.
This time delay has been removed and the last messages sent by netorcai should not be lost anymore.

	Data races could occur in the sending of the last messages to clients.

v1.2.0

	Commits since v1.1.0 [https://github.com/netorcai/netorcai/compare/v1.1.0...v1.2.0]

Added

	New CLI command --autostart,
that automatically starts the game when all clients (and one game logic) are connected.
The expected clients are those defined by --nb-players-max and --nb-visus-max.

Changed

	Client libraries are now hosted on netorcai’s organization github repository [https://github.com/netorcai].

	Documentation is now on netorcai’s readthedocs [https://netorcai.readthedocs.io].

Fixed

	All players always remained connected in the players_info array of GAME_STARTS and TURN messages.
Now, the is_connected field of disconnected players should be set to false.

v1.1.0

	Commits since v1.0.1 [https://github.com/netorcai/netorcai/compare/v1.0.1...v1.1.0]

	Release date: 2018-10-29

Added

	New CLI command --simple-prompt, that forces the use of the basic prompt.

v1.0.1

	Commits since v1.0.0 [https://github.com/netorcai/netorcai/compare/v1.0.0...v1.0.1]

	Release date: 2018-10-23

Changed

	The repository has moved to https://github.com/netorcai/netorcai.

v1.0.0

	Commits since v0.1.0 [https://github.com/netorcai/netorcai/compare/v0.1.0...v1.0.0]

	Release date: 2018-06-11

Added (program):

	The metaprotocol is now fully implemented.
netorcai is now heavily tested under continuous integration,
all coverable code should now be covered.

	New --delay-turns command-line option to specify the minimum
number of milliseconds between two consecutive turns.

	New interactive prompt.

Changed (metaprotocol):

	GAME_STARTS

	The data field has been renamed initial_game_state.

	player_id: The “null” player_id is now represented as -1
(was JSON’s null).

	New milliseconds_between_turns field
(minimum amount of milliseconds between two consecutive turns).

	New players_info array used to forward information about the
players to visualization clients.

	GAME_ENDS

	The data field has been renamed game_state.

	winner_player_id: The “null” player_id is now represented as -1
(was JSON’s null).

	TURN

	New players_info array used to forward information about the
players to visualization clients.

	DO_TURN_ACK

	New winner_player_id field,
which represents the current leader of the game (if any).

	The DO_FIRST_TURN message type has been renamed DO_INIT

	New DO_INIT_ACK message (game logic initialization).

Fixed:

	Various fixes, as the metaprotocol was not implemented yet — and therefore not tested.

v0.1.0

	First released version.

	Release date: 2018-05-02

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/archi.png
L

o O
Game logic Visualization
(program) (program)

N

netorcai

/ <pf°9'am>\
Player Player Player
(program) (program) (program)

_static/file.png

nav.xhtml

 Table of Contents

 		
 netorcai

 		
 Installation

 		
 Via go standard tools

 		
 Via Nix

 		
 Network metaprotocol

 		
 Network entities (endpoints)

 		
 Message types

 		
 LOGIN

 		
 LOGIN_ACK

 		
 KICK

 		
 GAME_STARTS

 		
 GAME_ENDS

 		
 TURN

 		
 TURN_ACK

 		
 DO_INIT

 		
 DO_INIT_ACK

 		
 DO_TURN

 		
 DO_TURN_ACK

 		
 Expected client behavior

 		
 Expected game logic behavior

 		
 Client libraries

 		
 Client libraries API

 		
 Usage examples

 		
 Getting the libraries

 		
 Frequently asked questions

 		
 Running netorcai in my scripts gives an ioctl error

 		
 Running netorcai in background does not work in my scripts

 		
 Rationale

 		
 Changelog

 		
 Unreleased

 		
 v2.0.0

 		
 Changed (breaks metaprotocol)

 		
 Added

 		
 Fixed

 		
 v1.2.0

 		
 Added

 		
 Changed

 		
 Fixed

 		
 v1.1.0

 		
 Added

 		
 v1.0.1

 		
 Changed

 		
 v1.0.0

 		
 Added (program):

 		
 Changed (metaprotocol):

 		
 Fixed:

 		
 v0.1.0

_static/plus.png

_static/logo_small.png

_static/minus.png

_static/up-pressed.png

_static/up.png

