
netorcai Documentation
Release 2.0.0

Millian Poquet

Feb 23, 2019

Contents:

1 Installation 3
1.1 Via go standard tools . 3
1.2 Via Nix . 3

2 Network metaprotocol 5
2.1 Network entities (endpoints) . 5
2.2 Message types . 6
2.3 Expected client behavior . 11
2.4 Expected game logic behavior . 12

3 Client libraries 13
3.1 Client libraries API . 13
3.2 Usage examples . 14
3.3 Getting the libraries . 15

4 Frequently asked questions 17
4.1 Running netorcai in my scripts gives an ioctl error . 17
4.2 Running netorcai in background does not work in my scripts . 17

5 Rationale 19

6 Changelog 21
6.1 Unreleased . 21
6.2 v2.0.0 . 21
6.3 v1.2.0 . 22
6.4 v1.1.0 . 23
6.5 v1.0.1 . 23
6.6 v1.0.0 . 23
6.7 v0.1.0 . 24

i

ii

netorcai Documentation, Release 2.0.0

netorcai (/net..ka/) is a network orchestrator for artificial intelligence games. It splits a classical game server process
into two processes, allowing to develop various games in any language without having to manage all network-related
issues about the clients.

This is done thanks to a Network metaprotocol.

Contents: 1

netorcai Documentation, Release 2.0.0

2 Contents:

CHAPTER 1

Installation

1.1 Via go standard tools

As netorcai is implemented in Go, it can be built with the go command. Installation steps are as follows.

1. Install a recent Go version.

2. Run go get github.com/netorcai/netorcai/cmd/netorcai. This will download and compile
netorcai. The executable will be put into ${GOPATH}/bin (if the GOPATH environment variable is unset, it
should default to ${HOME}/go or %USERPROFILE%\go).

In brief.

go get github.com/netorcai/netorcai/cmd/netorcai
${GOPATH:-${HOME}/go}/bin/netorcai --help

1.2 Via Nix

Nix is a package manager with amazing properties that is available on Linux-like systems. It stores all the packages
in a dedicated directory (usually /nix/store), which avoids interfering with classical system packages (usually in
/usr).

Once Nix is installed on your machine (instructions on Nix’s web page), packages can be installed with nix-env
--install (-i). The following command shows how to install netorcai with Nix.

Install latest release.
nix-env -f https://github.com/netorcai/netorcaipkgs/archive/master.tar.gz -iA netorcai

Alternatively, install latest commit.
nix-env -f https://github.com/netorcai/netorcaipkgs/archive/master.tar.gz -iA
→˓netorcai_dev

3

https://golang.org/
https://golang.org/cmd/go/
https://golang.org/
https://nixos.org/nix/
https://nixos.org/nix/

netorcai Documentation, Release 2.0.0

4 Chapter 1. Installation

CHAPTER 2

Network metaprotocol

This metaprotocol is based on TCP and is mostly textual, as all messages are composed of two parts.

1. CONTENT_SIZE, a 32-bit little-endian unsigned integer corresponding to the size of the message content (there-
fore excluding the 4 octets used to store CONTENT_SIZE). CONTENT_SIZE value must be smaller than 1 kio
for the first message, and smaller than 16 Mio for other messages.

2. CONTENT, an UTF-8 string of CONTENT_SIZE octets, terminated by an UTF-8 Line Feed character
(U+000A).

The content of each message must be a valid JSON object. Messages are typed (see message types) and clients must
follow a specified behavior (see expected client behavior).

2.1 Network entities (endpoints)

This metaprotocol allows multiple entities to communicate.

• The unique game logic entity, in charge of managing the game itself.

• Clients entities, that are in one of the following types.

– Player, in charge of taking actions to play the game

– Visualization, in charge of displaying the game progress

• The unique netorcai entity: Central orchestrator (broker) between the game logic and the clients.

Todo: Make a non-ugly entities figure.

5

https://www.json.org/

netorcai Documentation, Release 2.0.0

2.2 Message types

Each message has a type. This type is set as a string in the message_type field of the main message JSON object.
The other fields of the main JSON object depend on the message type.

List of messages between clients and netorcai.

• LOGIN

• LOGIN_ACK

• KICK

• GAME_STARTS

• GAME_ENDS

• TURN

• TURN_ACK

List of messages between netorcai and game logic.

• (LOGIN)

• (LOGIN_ACK)

• (KICK)

• DO_INIT

• DO_INIT_ACK

• DO_TURN

• DO_TURN_ACK

2.2.1 LOGIN

This message type is sent from (clients or game logic) to netorcai.

This is the first message sent by clients and game logic. It allows them to indicate they want to participate in the game.
netorcai answers this message with a LOGIN_ACK message if the logging in is accepted, or by a KICK message
otherwise.

Fields.

• nickname (string): The name the clients wants to have. Must respect the \A\S{1,10}\z (in go regular
expression syntax).

• role (string). Must be player, visualization or game logic.

• metaprotocol_version (string). The netorcai metaprotocol version used by the client (see Changelog).

Example.

{
"message_type": "LOGIN",
"nickname": "strutser",
"role": "player",
"metaprotocol_version": "2.0.0"

}

6 Chapter 2. Network metaprotocol

https://golang.org/pkg/regexp/syntax/
https://golang.org/pkg/regexp/syntax/

netorcai Documentation, Release 2.0.0

2.2.2 LOGIN_ACK

This message type is sent from netorcai to (clients or game logic).

It tells a client or the game logic that its LOGIN has been accepted.

Fields.

• metaprotocol_version (string). The netorcai metaprotocol version used by the netorcai program (see
Changelog).

Example.

{
"message_type": "LOGIN_ACK",
"metaprotocol_version": "2.0.0"

}

2.2.3 KICK

This message type is sent from netorcai to (clients or game logic).

It tells a client (or game logic) that it is about to be kicked out of a game. After sending this message, netorcai will no
longer read incoming messages from the kicked client (or game logic). It also means that netorcai is about to close
the socket.

It can be sent for multiple reasons:

• As a negative acknowledge to a LOGIN message

• If a message is invalid.

– Its content is not valid JSON.

– A field is missing or has an invalid value.

– If a client does not follow its expected behavior (see expected client behavior).

• If netorcai is about to terminate.

Fields:

• kick_reason (string): The reason why the client (or game logic) has been kicked

Example:

{
"message_type": "KICK",
"kick_reason": "Invalid message: Content is not valid JSON"

}

2.2.4 GAME_STARTS

This message type is sent from netorcai to clients.

It tells the client that the game is about to start.

Fields.

• player_id: (integral non-negative number or -1):

– If the client role is player, this is the player’s unique identifier.

2.2. Message types 7

netorcai Documentation, Release 2.0.0

– It the client role is visualization, this is -1.

• players_info: (array of objects): If this message is sent to a player, this array is empty. If this message
is sent to a visualization, this array contains information about each player.

– player_id (integral non-negative number): The unique player identifier.

– nickname (string): The player nickname.

– remote_address (string): The player network remote address.

– is_connected (bool): Whether the player is currently connected to netorcai.

• nb_players (integral positive number): The number of players of the game.

• nb_special_players (integral positive number): The number of special players of the game.

• nb_turns_max (integral positive number): The maximum number of turns of the game.

• milliseconds_before_first_turn (non-negative number): The number of milliseconds before the
first game TURN.

• milliseconds_between_turns (non-negative number): The minimum number of milliseconds between
two consecutive game TURN.

• initial_game_state (object): Game-dependent content.

Example.

{
"message_type": "GAME_STARTS",
"player_id": -1,
"players_info": [
{

"player_id": 0,
"nickname": "jugador",
"remote_address": "127.0.0.1:59840",
"is_connected": true

}
],
"nb_players": 4,
"nb_special_players": 0,
"nb_turns_max": 100,
"milliseconds_before_first_turn": 1000,
"milliseconds_between_turns": 1000,
"initial_game_state": {}

}

2.2.5 GAME_ENDS

This message type is sent from netorcai to clients.

It tells the client that the game is finished. The client can safely close the socket after receiving this message.

Fields.

• winner_player_id (integral non-negative number or -1): The unique identifier of the player that won the
game. Can be -1 if there is no winner.

• game_state (object): Game-dependent content.

Example.

8 Chapter 2. Network metaprotocol

netorcai Documentation, Release 2.0.0

{
"message_type": "GAME_ENDS",
"winner_player_id": 0,
"game_state": {}

}

2.2.6 TURN

This message type is sent from netorcai to clients.

It tells the client a new turn has started.

Fields.

• turn_number (non-negative integral number): The number of the current turn.

• game_state (object): Game-dependent content that directly corresponds to the game_state field of a
DO_TURN_ACK message.

• players_info: (array of objects): If this message is sent to a player, this array is empty. If this message
is sent to a visualization, this array contains information about each player.

– player_id (integral non-negative number): The unique player identifier.

– nickname (string): The player nickname.

– remote_address (string): The player network remote address.

– is_connected (bool): Whether the player is currently connected to netorcai.

Example.

{
"message_type": "TURN",
"turn_number": 0,
"game_state": {},
"players_info": [
{

"player_id": 0,
"nickname": "jugador",
"remote_address": "127.0.0.1:59840",
"is_connected": true

}
]

}

2.2.7 TURN_ACK

This message type is sent from clients to netorcai.

It tells netorcai that the client has managed a turn. For players, it contains the actions the player wants to do.

Fields.

• turn_number (non-negative integral number): The number of the turn that the client has managed. Value
must match the turn_number of the latest TURN received by the client.

• actions (array): Game-dependent content. Must be empty for visualizations.

Example.

2.2. Message types 9

netorcai Documentation, Release 2.0.0

{
"message_type": "TURN_ACK",
"turn_number": 0,
"actions": []

}

2.2.8 DO_INIT

This message type is sent from netorcai to game logic.

This message initiates the sequence to start the game. netorcai gives information to the game logic, such that the game
logic can generate the game initial state.

Fields.

• nb_players (integral positive number): The number of players in the game.

• nb_special_players (integral positive number): The number of special players in the game.

• nb_turns_max (integral positive number): The maximum number of turns of the game.

Example.

{
"message_type": "DO_INIT",
"nb_players": 4,
"nb_special_players": 0,
"nb_turns_max": 100

}

2.2.9 DO_INIT_ACK

This message is sent from game logic to netorcai.

It means that the game logic has finished its initialization. It sends initial information about the game, which is
forwarded to the clients.

Fields.

• initial_game_state (object): The initial game state, as it should be transmitted to clients. Only the
all_clients key of this object is currently implemented, which means the associated game-dependent object
will be transmitted to all the clients (players and visualizations).

Example.

{
"initial_game_state": {
"all_clients": {}

}
}

2.2.10 DO_TURN

This message type is sent from netorcai to game logic.

It tells the game logic to do a new turn.

10 Chapter 2. Network metaprotocol

netorcai Documentation, Release 2.0.0

Fields.

• player_actions (array): The actions decided by the players. There is at most one array element per player.
This array contains objects that must contain the following fields.

– player_id (non-negative integral number): The unique identifier of the player who decided the actions.

– turn_number (non-negative integral number): The turn whose the actions comes from (received from
TURN_ACK).

– actions (array): The actions of the player. Game-dependent content (received from TURN_ACK).

Example.

{
"message_type": "DO_TURN",
"player_actions": [
{

"player_id": 0,
"turn_number": 0,
"actions": []

}
]

}

2.2.11 DO_TURN_ACK

This message type is sent from game logic to netorcai.

Game logic has computed a new turn and transmits its results.

Fields.

• winner_player_id (non-negative integral number or -1): The unique identifier of the player currently
winning the game. Can be -1 if there is no current winner.

• game_state (object): The current game state, as it should be transmitted to clients. Only the all_clients
key of this object is currently implemented, which means the associated game-dependent object will be trans-
mitted to all the clients (players and visualizations).

Example.

{
"message_type": "DO_TURN_ACK",
"winner_player_id": 0,
"game_state": {
"all_clients": {}

}
}

2.3 Expected client behavior

netorcai manages the clients by associating them with a state. In a given state, a client can only receive and send
certain types of messages. A client that sends an unexpected type of message is kicked by netorcai (see KICK).

The following figure summarizes the expected behavior of a client.

• Each node is a client state.

2.3. Expected client behavior 11

netorcai Documentation, Release 2.0.0

• Edges are transitions between states.

– ?MSG_TYPE means that the client receives a message of type MSG_TYPE.

– !MSG_TYPE means that the client sends a message of type MSG_TYPE.

Todo: Make a non-ugly client behavior figure.

2.4 Expected game logic behavior

Similarly to clients, netorcai manages the game logic by associating it with a state.

Its expected behavior is described in the following figure.

Todo: Make a non-ugly logic behavior figure.

12 Chapter 2. Network metaprotocol

CHAPTER 3

Client libraries

The netorcai architecture is a client-server one. The netorcai program has the role of a network server while the other
entities (games, players and visualizations) have a client role.

While netorcai clients can be implemented from scratch, several libraries have been implemented to ease the com-
munication with the netorcai server. All these libraries are available in the netorcai organization github repository.
Currently, the following libraries have been implemented.

• netorcai-client-cpp

• netorcai-client-d

• netorcai-client-fortran

• netorcai-client-java

• netorcai-client-python

Contrary to bindings, all these libraries are fully implemented in the target programming language. The main ad-
vantage is that the installation of each library is simplified, as it can be done directly with the language packaging
tools.

3.1 Client libraries API

All the client libraries propose the same programming interface. Inner details may of course vary depending on the
programming language, such as the type used to store collections of items or the variable/function name depending on
the language coding style. All existing libraries provide the following.

• A high-level Client class that manages the network connection.

• Structured types for the various messages of the metaprotocol (see Message types). Each message is imple-
mented as a struct in C++ and D, and as class in Java and Python.

• Functions to parse the various metaprotocol messages.

The Client class is intended to be the main way to send and receive netorcai messages. This class provides the
following methods.

13

https://github.com/netorcai/
https://github.com/netorcai/netorcai-client-cpp
https://github.com/netorcai/netorcai-client-d
https://github.com/netorcai/netorcai-client-fortran
https://github.com/netorcai/netorcai-client-java
https://github.com/netorcai/netorcai-client-python
https://en.wikipedia.org/wiki/Language_binding

netorcai Documentation, Release 2.0.0

• Various methods to send metaprotocol messages on the network, named send<MESSAGE_TYPE> (e.g.,
sendLogin).

• Various methods to receive and parse metaprotocol messages from the network, named
read<MESSAGE_TYPE> (e.g., readLoginAck). These functions do not return until a message
could be read (or if a connection issue has been detected).

• sendString and sendJson, that respectively send a user-defined string or a user-defined JSON object on
the network.

• recvString and recvJson, that respectively receive a string or a JSON object from the network. These
functions do not return until a message could be read (or if a connection issue has been detected).

Note: All these methods can throw exceptions if a network error has been encountered. Furthermore, all
read<MESSAGE_TYPE> methods will throw an exception if an unexpected message type has been received (e.g., if
the client received a KICK).

3.2 Usage examples

As an example, here is a basic player bot in Python.

try:
Instantiate a client in memory.
client = Client()

Connect the internal socket to netorcai (on the 4242 port of the local machine).
client.connect("localhost", 4242)

Log in to netorcai as a player. The client's nickname is "Example".
client.send_login("Example", "player")
client.read_login_ack()

Wait for the game to start.
game_starts = client.read_game_starts()

Precalculation can be done here. Here, the initial game state is just printed.
print(game_starts.initial_game_state)

For each turn.
for i in range(game_starts.nb_turns_max):

Wait for the turn to start.
turn = client.read_turn()
Decide what to do. Here, the current game state is just printed and no

→˓action is done.
print(turn.game_state)
actions = []
Send the decided actions to netorcai.
client.send_turn_ack(turn.turn_number, [])

except Exception as e:
print(e)

All libraries have examples in the examples directory of their respective repository. Please refer to them for more
examples.

14 Chapter 3. Client libraries

netorcai Documentation, Release 2.0.0

3.3 Getting the libraries

Getting the latest released version is easy for languages that have a standard package index.

• D: Add the netorcai-client dependency in your project (netorcai-client package on DUB).

• Java: Not uploaded on the maven repository yet .

• Python: pip install netorcai (netorcai package on PyPI)

Otherwise, getting the library from its git repository is pretty straightforward. Building and installation instructions
are in the README of each repository.

Alternatively, some of these libraries are packaged in Nix in the netorcaipkgs package repository. Here are some
commands to install the libraries.

Install the C++ client library.
Latest release
nix-env -f https://github.com/netorcai/netorcaipkgs/archive/master.tar.gz -iA
→˓netorcai_client_cpp
Up-to-date (latest commit)
nix-env -f https://github.com/netorcai/netorcaipkgs/archive/master.tar.gz -iA
→˓netorcai_client_cpp_dev

3.3. Getting the libraries 15

https://code.dlang.org/packages/netorcai-client
https://pypi.org/project/netorcai/
https://nixos.org/nix/
https://github.com/netorcai/pkgs

netorcai Documentation, Release 2.0.0

16 Chapter 3. Client libraries

CHAPTER 4

Frequently asked questions

4.1 Running netorcai in my scripts gives an ioctl error

Try using the --simple-prompt option.

4.2 Running netorcai in background does not work in my scripts

Try launching netorcai via nohup.

17

https://en.wikipedia.org/wiki/Nohup

netorcai Documentation, Release 2.0.0

18 Chapter 4. Frequently asked questions

CHAPTER 5

Rationale

In the context of Lionel Martin’s challenge, I have been involved in the implementation of multiagent network games
meant to be played by bots.

After implementing several games (spaceships in 2014, aquar.iom in 2016) I came to the following conclusions.

• Implenting the network server is tough.

• Handling the clients correctly (errors, fairness, not spamming slow clients. . .) mostly means that most of the
development time is in the network game server, not in the game itself.

• The games in this context are quite specific (fair, turn-based, visualizable, no big performance constraint), which
means the development effort can be shared regarding the network server.

19

https://www.univ-orleans.fr/iut-orleans/informatique/intra/concours/
https://github.com/mpoquet/concoursiuto2015
https://github.com/mpoquet/aquar.iom

netorcai Documentation, Release 2.0.0

20 Chapter 5. Rationale

CHAPTER 6

Changelog

All notable changes to this project will be documented in this file. The format is based on Keep a Changelog. netorcai
adheres to Semantic Versioning and its public API includes the following.

• netorcai’s program command-line interface.

• netorcai’s metaprotocol.

6.1 Unreleased

• Commits since v2.0.0

6.2 v2.0.0

• Commits since v1.2.0

• Release date: 2019-02-24

6.2.1 Changed (breaks metaprotocol)

• The CONTENT_SIZE message header is now 32-bit (was 16-bit). CONTENT_SIZE value must be smaller than
1 Kio for the first message, and smaller than 16 Mio for other messages.

• Protocol version handshake added in LOGIN and LOGIN_ACK. As a result, old clients will not be able to log
in anymore because their metaprotocol version is unknown.

21

http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html
https://github.com/netorcai/netorcai/compare/v2.0.0...master
https://github.com/netorcai/netorcai/compare/v1.2.0...v2.0.0
https://en.wikipedia.org/wiki/Binary_prefix#Adoption_by_IEC,_NIST_and_ISO
https://en.wikipedia.org/wiki/Binary_prefix#Adoption_by_IEC,_NIST_and_ISO

netorcai Documentation, Release 2.0.0

6.2.2 Added

• New CLI command --fast, which allows to start a new turn as soon as all players have decided what to do
— instead of relying on a timer. This assumes that all player clients return in finite time — either by returning a
TURN_ACK or by closing their sockets.

• Special players can now be connected to netorcai. The game logic knows which bots are special, which allows
implementing game modes with asymetric game rules. As an example, the ghosts of a bomberman game could
be implemented in a special player bot which could have different actions than bombermen.

– New CLI command --nb-splayers-max, to define the maximum number of special players.

– DO_INIT and GAME_STARTS messages now contain a nb_special_players field.

6.2.3 Fixed

• Various corner case deadlocks have been fixed and should now be covered by integration tests.

• Several issues around netorcai’s termination have been fixed.

– Kicking clients induced a non-compressible time delay to limit the loss of messages. This time delay has
been removed and the last messages sent by netorcai should not be lost anymore.

– Data races could occur in the sending of the last messages to clients.

6.3 v1.2.0

• Commits since v1.1.0

6.3.1 Added

• New CLI command --autostart, that automatically starts the game when all clients (and one game logic)
are connected. The expected clients are those defined by --nb-players-max and --nb-visus-max.

6.3.2 Changed

• Client libraries are now hosted on netorcai’s organization github repository.

• Documentation is now on netorcai’s readthedocs.

6.3.3 Fixed

• All players always remained connected in the players_info array of GAME_STARTS and TURN messages.
Now, the is_connected field of disconnected players should be set to false.

22 Chapter 6. Changelog

https://github.com/netorcai/netorcai/compare/v1.1.0...v1.2.0
https://github.com/netorcai
https://netorcai.readthedocs.io

netorcai Documentation, Release 2.0.0

6.4 v1.1.0

• Commits since v1.0.1

• Release date: 2018-10-29

6.4.1 Added

• New CLI command --simple-prompt, that forces the use of the basic prompt.

6.5 v1.0.1

• Commits since v1.0.0

• Release date: 2018-10-23

6.5.1 Changed

• The repository has moved to https://github.com/netorcai/netorcai.

6.6 v1.0.0

• Commits since v0.1.0

• Release date: 2018-06-11

6.6.1 Added (program):

• The metaprotocol is now fully implemented. netorcai is now heavily tested under continuous integration, all
coverable code should now be covered.

• New --delay-turns command-line option to specify the minimum number of milliseconds between two
consecutive turns.

• New interactive prompt.

6.6.2 Changed (metaprotocol):

• GAME_STARTS

– The data field has been renamed initial_game_state.

– player_id: The “null” player_id is now represented as -1 (was JSON’s null).

– New milliseconds_between_turns field (minimum amount of milliseconds between two consec-
utive turns).

– New players_info array used to forward information about the players to visualization clients.

6.4. v1.1.0 23

https://github.com/netorcai/netorcai/compare/v1.0.1...v1.1.0
https://github.com/netorcai/netorcai/compare/v1.0.0...v1.0.1
https://github.com/netorcai/netorcai
https://github.com/netorcai/netorcai/compare/v0.1.0...v1.0.0

netorcai Documentation, Release 2.0.0

• GAME_ENDS

– The data field has been renamed game_state.

– winner_player_id: The “null” player_id is now represented as -1 (was JSON’s null).

• TURN

– New players_info array used to forward information about the players to visualization clients.

• DO_TURN_ACK

– New winner_player_id field, which represents the current leader of the game (if any).

• The DO_FIRST_TURN message type has been renamed DO_INIT

• New DO_INIT_ACK message (game logic initialization).

6.6.3 Fixed:

• Various fixes, as the metaprotocol was not implemented yet — and therefore not tested.

6.7 v0.1.0

• First released version.

• Release date: 2018-05-02

Todo: Make a non-ugly entities figure.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/netorcai/checkouts/stable/docs/metaprotocol.rst,
line 36.)

Todo: Make a non-ugly client behavior figure.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/netorcai/checkouts/stable/docs/metaprotocol.rst,
line 457.)

Todo: Make a non-ugly logic behavior figure.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/netorcai/checkouts/stable/docs/metaprotocol.rst,
line 470.)

24 Chapter 6. Changelog

	Installation
	Via go standard tools
	Via Nix

	Network metaprotocol
	Network entities (endpoints)
	Message types
	Expected client behavior
	Expected game logic behavior

	Client libraries
	Client libraries API
	Usage examples
	Getting the libraries

	Frequently asked questions
	Running netorcai in my scripts gives an ioctl error
	Running netorcai in background does not work in my scripts

	Rationale
	Changelog
	Unreleased
	v2.0.0
	v1.2.0
	v1.1.0
	v1.0.1
	v1.0.0
	v0.1.0

